Natural gas, as it is used by consumers, is much different from the natural gas that is brought from underground up to the wellhead. Although the processing of natural gas is in many respects less complicated than the processing and refining of crude oil, it is equally as necessary before its use by end users.
The natural gas used by consumers is composed almost entirely of methane. However, natural gas found at the wellhead, although still composed primarily of methane, is by no means as pure. Raw natural gas comes from three types of wells: oil wells, gas wells, and condensate wells. Natural gas that comes from oil wells is typically termed 'associated gas'. This gas can exist separate from oil in the formation (free gas), or dissolved in the crude oil (dissolved gas). Natural gas from gas and condensate wells, in which there is little or no crude oil, is termed 'nonassociated gas'. Gas wells typically produce raw natural gas by itself, while condensate wells produce free natural gas along with a semi-liquid hydrocarbon condensate. Whatever the source of the natural gas, once separated from crude oil (if present) it commonly exists in mixtures with other hydrocarbons; principally ethane, propane, butane, and pentanes. In addition, raw natural gas contains water vapor, hydrogen sulfide (H2S), carbon dioxide, helium, nitrogen, and other compounds. To learn about the basics of natural gas, including its composition, click here.
Natural gas processing consists of separating all of the various hydrocarbons and fluids from the pure natural gas, to produce what is known as 'pipeline quality' dry natural gas. Major transportation pipelines usually impose restrictions on the make-up of the natural gas that is allowed into the pipeline. That means that before the natural gas can be transported it must be purified. While the ethane, propane, butane, and pentanes must be removed from natural gas, this does not mean that they are all 'waste products'.
In fact, associated hydrocarbons, known as 'natural gas liquids' (NGLs) can be very valuable by-products of natural gas processing. NGLs include ethane, propane, butane, iso-butane, and natural gasoline. These NGLs are sold separately and have a variety of different uses; including enhancing oil recovery in oil wells, providing raw materials for oil refineries or petrochemical plants, and as sources of energy.
While some of the needed processing can be accomplished at or near the wellhead (field processing), the complete processing of natural gas takes place at a processing plant, usually located in a natural gas producing region. The extracted natural gas is transported to these processing plants through a network of gathering pipelines, which are small-diameter, low pressure pipes. A complex gathering system can consist of thousands of miles of pipes, interconnecting the processing plant to upwards of 100 wells in the area. According to the American Gas Association's Gas Facts 2000, there was an estimated 36,100 miles of gathering system.
In addition to processing done at the wellhead and at centralized processing plants, some final processing is also sometimes accomplished at 'straddle extraction plants'. These plants are located on major pipeline systems. Although the natural gas that arrives at these straddle extraction plants is already of pipeline quality, in certain instances there still exist small quantities of NGLs, which are extracted at the straddle plants.
The actual practice of processing natural gas to pipeline dry gas quality levels can be quite complex, but usually involves four main processes to remove the various impurities:
• Oil and Condensate Removal
• Water Removal
• Separation of Natural Gas Liquids
• Sulfur and Carbon Dioxide Removal
In addition to the four processes above, heaters and scrubbers are installed, usually at or near the wellhead. The scrubbers serve primarily to remove sand and other large-particle impurities. The heaters ensure that the temperature of the gas does not drop too low. With natural gas that contains even low quantities of water, natural gas hydrates have a tendency to form when temperatures drop. These hydrates are solid or semi-solid compounds, resembling ice like crystals. Should these hydrates accumulate, they can impede the passage of natural gas through valves and gathering systems. To reduce the occurrence of hydrates, small natural gas-fired heating units are typically installed along the gathering pipe wherever it is likely that hydrates may form.
No comments:
Post a Comment